Renewable Power Generation by Solar Particle Receiver Driven Sulphur Storage Cycle

SO₃ splitting catalytic systems development

Dr. George Karagiannakis

Principal Researcher at the Chemical Process & Energy Resources Institute / Centre for

Research & Technology Hellas (CPERI/CERTH)

PEGASUS Workshop September 9th, 2021

The reaction – background information & challenges

The Solid Sulphur Cycle

	Reaction	Temperature
Sulphuric acid	$2H_2SO_4(aq) \rightarrow 2H_2O(g) + 2SO_3(g)$	450-500°C
decomposition	$2SO_3(g) \rightarrow O_2(g) + 2SO_2(g)$	700-950°C
Disproportionation	$2H_2O(I) + 3SO = g \rightarrow 2H_2SO_4(aq) + S(s)$	50-200°C
Sulphur Combustion	$S(I) + O_2(g) \rightarrow O_2(g)$	500-1500°C
	₹₽	

Common for all sulfur-based thermochemical cycles

Catalyst	Temperature	Performance	Conclusion	
Pt/Al_2O_3 (TiO ₂)	700-800°C	Activity close to thermodynamic, Pt sublimation, sulfidation	Not currently considered	
Fe ₂ O ₃	800-900°C	Fair bur lower activity cf. best performers, stable long-term	Benchmark catalyst, low cost	
Cr ₂ O ₃	800-900°C	High activity, Cr leaching	Not currently considered	
Fe _x Cr _{1-x} O ₃	800-900°C	High activity, eventual Cr leaching, structural changes	Not currently considered	
CuO	800-900°C	High activity, structural changes	Cost issue	
CuO/Al ₂ O ₃	800-900°C	High activity, stable long-term	Promising, minimize Cu content	
Cu-Fe-Al mixed ox.	800-900°C	High activity, structural changes / not sufficiently tested	Likely not preferred option	
Cu _{1-x} V _x O _z	600-650°C	High activity but with dilute SO_3 , stable, partial liquefaction	Promising but challenging	

Main challenge: Chemically & thermally harsh conditions for catalysts & reactor construction materials

The PEGASUS approach – straightforward concept (I)

Catalytically-modified particles (proppants) as **both HTF & catalyst** for SO₃ splitting **Reactor downstream the particle receiver**

"Catalytic" Fe/Cu/Mn-modified bauxite proppants \rightarrow moving catalyst bed \rightarrow direct contact with SO₃ vapours (SO₃ \rightarrow SO₂ + O₂); downstream indirect evaporation of H₂SO₄ in SO₃ and H₂O_(g) in a counter-flow cascade-like configuration.

Catalytic evaluation of particles & proppants (II)

Catalytic & thermomechanical evaluation of > 60 samples:

- ✓ Modified & unmodified bauxite-based proppants
- ✓ Iron oxide-based dense particles
- ✓ Copper oxide-based dense particles

Screening setup (1 – 10 h)

- Evaluation in fixed bed reactors with concentrated sulfuric acid feed @ 800-900°C
- Analysis by: SO₂ via UV-Vis spectrometry, O₂ measurements, titration

Catalytic evaluation of particles & proppants (III)

Parametric tests: effect of reaction temperature & residence time/GHSV on SO_3 conversion Sample: Cu-Mn-O modified proppant

Catalytic evaluation of particles & proppants (IV)

Most promising samples from screening studies - overview

No	Sample name	SO ₃ conversion (%)	Crushing Strength (in N)		CS % change
		@850°C	Fresh particles	Used particles	
1	CuO_clay=15/85_1 dense particles	63.9	16	18	+12.5
2	CuO_clay=15/85_2 dense particles	63.4	15	22	+46.7
3	BCH-18 (Cu-modified proppants)	62.4	102	77	-24.5
4	BCH-25 (Cu-Mn-modified proppants)	61.6	55	57	+3.6
5	BCH-26 (Cu-Mn-modified proppants)	59.4	53	53	0
6	CuO_clay=75/25 dense particles	59.3	32	33	+3.1
7	BCH-19 (Cu-modified proppants)	59.3	74	69	-6.8
8	Fe ₂ O ₃ particles dense particles	54.8	23	29	+26.1

Choice on the basis of combined high SO₃ conversion, thermomechanical stability (i.e. CS parameter) & in-principle production scalability

Post characterization of exposed samples – indicative results (I)

Comparative physicochemical characterization of pristine (fresh) & exposed (used) samples

- Macroporosity visible in the fresh/used samples. Signs of sintering in used samples
- Atomic analysis (wt%): Al, Si, Cu & Mn as main phases; S clearly detected in the used samples

Post characterization of exposed samples – indicative results (II)

- Strong indication for the formation of a surface CuO-rich layer
- Sulfur detected mostly on the surface (spatial correlation with CuO)

Post characterization of exposed samples – indicative results (III)

- Weight loss due to sulphates decomposition is directly proportional to catalytic activity
- Reaction mechanism via cyclic sulphates formation & decomposition:

 $MO + SO_3 \leftrightarrow MSO_4 \leftrightarrow MO + SO_2 + 0.5O_2$

Long-term exposure test of best performing modified proppants

- High & stable conversion @ 60-80% (equilibrium conversion @ conditions employed ~ 89 %)
- No performance loss after > 1000 h on stream

The PEGASUS approach – revised concept

Challenges of straightforward concept:

- Catalytic modified proppants: costly, complicated production & of low thermomechanical stability
- ✓ Directly exposed particles likely to cause corrosion to the receiver (due to residual sulphates)

Non-catalytic, cheap, "plain" bauxite proppants \rightarrow shelland-tube sulphuric acid evaporator/SO₃ splitting reactor cascade \rightarrow **indirect heat transfer** between the particles on the shell-side and fluid (H₂SO₄ vapours) on the tube-side, which therein will come into contact with **a non-moving catalyst bed.**

<u>Concept</u> adopted in the project for experimental validation \rightarrow tbd in the next presentation

The PEGASUS revised concept – preparation of catalytic structures

Slurry/dip coating of SiSiC foams \rightarrow Fe₂O₃

- CERTH
- Coating of 24 segments of \emptyset 24 mm x 40 mm in total \rightarrow decomposer setup @DLR
- Average loading (Fe₂O₃ mass/clean foam mass): 37.5 wt%
- Homogeneous coating & low pressure drop of coated segments

Long-term exposure of a Fe₂O₃-coated foam

O2

H₂SO₄ (25°C)

- Parametric experiments with same specimen, accumulating 362 h on-stream in total
- Near-equilibrium conversion @ 850°C within a range of H₂SO₄ flow rates & reproducible

Conclusions & future recommendations

- Modified proppants manufacturing to combine high SO₃ splitting catalytic activity and HTF possible but far from optimized:
 - \checkmark w.r.t. expected real operational environment \rightarrow receiver's corrosion risk is high
 - \checkmark Scaling-up feasibility \rightarrow modified proppants manufacturing complicated & costly
- Long term exposure (up to > 1000 h) under ideal lab-scale conditions \rightarrow promising results
- Focus on the indirect heat transfer concept by using cheap proppants & catalytically active structures of high gas-solid contact area
 - ✓ Careful design and room for optimization to achieve *efficient solid-solid heat transfer*
- Work to achieve validation under more realistic conditions & for long-term operation

Development of a next version of decomposer reaction *@ high pressure* (P > 10 bar)

Thank you for your attention!

www.pegasus-project.eu

* * * * * * *

Co-funded by the Horizon 2020 Framework Programme of the European Union

