Solar sulphur – fuel for on-demand and carbon-free power production

Knowledge for Tomorrow

2nd Middle East Sulphur, Abu Dhabi, 19th Mar. 2018

<u>Dennis Thomey</u>, Christos Agrafiotis, Nicolas Overbeck, Martin Roeb, Christian Sattler

Co-funded by the Horizon 2020 Framework Programme of the European Union

Contents

- DLR Institute of Solar Research Solar Chemical Engineering
- Potential of solar energy
- Sulphur as solar fuel and thermochemical storage medium
- Solar sulphur power generation
- Background of DLR on sulphur cycles
- European project PEGASUS
- Conclusions and outlook

German Aerospace Center (DLR)

- Research Institution, Space Agency and Project Management Agency
- Research Areas:
 - Aeronautics
 - Space Research and Technology
 - Transport
 - Energy
 - Defence and Security
- 8000 employees across 33 institutes and facilities at 20 sites in Germany
- Offices in Brussels, Paris, Tokyo and Washington
- Total income 2015: 888 Mio. €

Institute of Solar Research

Point Focus Systems

- Heliostats
- High temperature receivers
- System technology

Qualification

- Components
- Component durability
 - Systems

Line Focus Systems

- Heat transfer media
- Collector development
- Industrial process heat

Solar Energy Meteorology

- Solar radiation measurement and modelling
- Radiation nowcasting
- Other meteorological influences

New Materials

- Absorber materials
- High temperature redox systems
- Photocatalysts
- Heat transfer fluids

Solar Chemical Engineering

- Solar fuels
- Solar water treatment

Institute of Solar Research Research Facilities in Cologne and Juelich (Germany)

Solar Tower Juelich Experimental solar power plant, Germany's unique solar tower

Synlight Solar simulator – the world's largest artificial sun

CeraStorE[®] Competence center for ceramic materials and thermal storage technologies in energy research

High-flux Solar Furnace and Xenon High-flux Solar Simulator

Outdoor Test Installations

QUARZ[®] Test and qualification center for CSP technologies

Potential of solar energy

M. Schmitz, TSK Flagsol

Concentrated Solar Power (CSP) Plants

Central Receiver Heliostats

Parabolic Trough 400 °C

Solar Dish 2000 °C

DLR Solar Power Tower in Juelich, Germany Research and demonstration plant

- 2153 heliostats (mirrors) à 8 m²
- 60 m tower
- 22 m² solar receiver
- 680 °C air outlet temperature of receiver
- 1.5 MW_{el} steam turbine
- Thermal storage for 1 hour of full load operation

Khi Solar One, South Africa 50 MW, 2h Storage, 2016

PS10

11 MW, 2007

PS20

20 MW, 2009

Gemasolar Seville, Spain (2011) 20 MW, 15 h Storage

> Ivanpah, California, USA (2014) 377 MW, serves >140.000 homes

Seville, Spain

- (in the the the the

Ivanpah Solar

<u>8 km</u>

mage © 2013 DigitalGlobe

Comparison of energy storage densities

Technology	Energy density (kJ/kg)		Volumetric energy density (kJ/l)
Hydrogen	141,886	1	~6,700 *
Gasoline	47,357	1	~35,000
Sulphur	9,281	2	~18,000
Lithium Ion Battery	580	2	~730
Molten Salt	282	2	~540
Elevated water Dam (100m)	1	2	~1

¹College of the Desert ²General Atomics *at 700 bar

Thermochemical sulfur storage cycle for baseload solar power production

Solar particle technology

- Direct absorption \Rightarrow high efficiency and energy density
- Direct storage
- Receiver and storage at ambient pressure
- No freezing and no decomposition
- Low parasitic
- Low security requirements

Research of DLR on sulphur cycles

- Experience on solar sulphuric acid cracking since more than 20 years
- Research on Hybrid Sulphur Cycle for hydrogen production in European projects HYTHEC, HycycleS and SOL2HY2 (2004 – 2016)
 - Development and on-sun testing of receiver/reactors in solar furnace
 - Construction of pilot unit and demo operation on solar tower
 - Modelling of reactors
 - Testing of catalysts and construction materials
 - Flowsheeting and techno-economics of HyS process
 - Scale-up concepts

Project Baseload (Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation)

- Funding: United States Department of Energy (DOE)
 - 2 project phases from 2010 to 2013
 - GO/NO-GO review after phase I
 - Phase I completed in Mar. 2012
 - GO recommendation for Phase II (May 2012 Oct. 2013)
- Coordinator: General Atomics (GA), USA
 - SO₂ disproportionation
 - Sulfur combustion
 - Experiments, plant design, flowsheeting, economics
- Subcontractor: German Aerospace Center (DLR)
 - H₂SO₄ decomposition
 - Experiments, modeling
 - Funded work and in-kind contribution

PEGASUS partners

- DLR, Germany (Coordinator)
 - Solar tower/simulator owner/operator
 - Solar receiver/reactor developer
- APTL/CERTH, Greece
 - Catalyst materials developer
- KIT, Germany
 - Combustion specialist
- Baltic Ceramics, Poland
 - Advanced ceramics manufacturer
- Processi Innovativi, Italy
 - Power plant designer/contractor
- BrightSource, Israel
 - CSP plant designer/contractor

PEGASUS – Work plan

- WP1: Catalytic particles development, manufacturing APTL, Baltic Ceramics
- WP2: Centrifugal particle solar receiver DLR
 - Preparation of existing test receiver
 - On-sun test operation with catalytic particles (WP1)
- WP3: Sulphur trioxide decomposer + WP4: Sulphuric acid evaporator DLR
 - Development and construction of moving bed reactors with direct (WP3) and indirect (WP4) heat transfer
 - Off-sun test operation
- WP5: Sulphur Combustor KIT
 - Development, construction and operation of sulphur burner
- WT6.1, 6.5, 6.6: Overall concept evaluation Processi Innovativi, BrightSource
 - System modelling, flowsheeting, techno-economy
- WT6.2-6.4: System integration, test operation DLR
 - Integrated operation of solar receiver (WP2) and sulphuric acid splitting reactors (WP3, WP4)

Centrifugal particle solar receiver optimization Application of pilot receiver developed in CentRec project

- Centrifugal particle receiver was erected on scaffold in front of Juelich Solar Tower
 - Nominal power: 2.5 MW_{th}
 - Diameter of aperture: 1.13 m
 - Max. particle temperature: 1000 °C
- Commissioning completed
- Solar testing of CentRec started in autumn 2017

- Solar testing of catalytic particles in CentRec pilot planned for Apr./May 2018
- Integrated testing together with particle reactors for sulphuric acid splitting planned in last project year

SO₂

Conclusions and outlook

- Sulphur has high thermochemical energy density
- Efficient transportation and storage of solid or liquid sulphur
- Solar sulphur cycle allows for baseload power production
- Potential for integration of sulphur cycle into existing sulphuric acid plants
- Investigation of solar sulphur cycle in European project PEGASUS
 - Development and on-sun testing of catalytically active solar particles
 - Construction of particle reactor for sulphuric acid splitting
 - Prototype development of sulphur burner for gas turbine
 - Process simulation and techno-economic analysis

Thank you for your attention!

