

Composite particles as active catalysts for the SO₃ dissociation reaction of the

thermochemical storage scheme based on elemental sulfur

Nikolaos I. Tsongidis^{1,2}, George Karagiannakis¹, Kyriaki G. Sakellariou^{1,2}, Chrysoula Pagkoura¹, Athanasios G. Konstandopoulos^{1,2}, Dariusz Janus³, Marek Zagaja³, Daria Pomykalska³

¹Aerosol & Particle Technology Laboratory, CPERI/CERTH, P.O. Box 60361, 57001, Thessaloniki, Greece ²Department of Chemical Engineering, Aristotle University, P.O. Box 1517, 54006, Thessaloniki, Greece ³Baltic Ceramics, 30/63 Swietokrzyska St, 00116, Warsaw, Poland

INTRODUCTION

The work is in the framework of definition & validation of a novel power cycle via coupling of a centrifugal particle receiver^[1] for solar towers & a compact sulfur-based Thermo-Chemical Storage (TCS) scheme. The concept combines high operating temperatures with high energy density storage (12.5 MJ/kg S) potential.

Endothermic reaction steps (charge)

 $H_2SO_{4(aq)} \rightarrow 2SO_{3(g)} + 2H_2O_{(g)} T = 450-500^{\circ}C$ $2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)} T = 700-900^{\circ}C$ $\Delta H = +560 kJ/mol$

Exothermic reaction steps (discharge)

 $2H_2O_{(I)} + 3SO_{2(g)} \rightarrow 2H_2SO_{4(aq)} + S_{(s)}T = 50-200^{\circ}C \Delta H = -260 kJ/mol$ $S_{(I)} + O_{2(g)} \rightarrow SO_{2(g)} T = 500-1500^{\circ}C \Delta H = -300 kJ/mol$

The present work focuses on the development and experimental evaluation of oxide-based particles as both catalysts for the SO₃ dissociation reaction (primarily) and Heat Transfer Fluid (HTF). Main requirements are high thermo-mechanical strength, resistance to chemically harsh environment & suitable particle color. The study includes structural, morphological, mechanical & catalytic activity results.

STRUCTURAL, MORPHOLOGICAL & MECHANICAL PROPERTIES

Structural characterization by X-Ray Diffraction

Mechanical strength by Crushing Strength (CS) measurements

	Material	T _{calcination} /°C	Phases identified	Cs _{fresh} /N	
APTL	Commercial Fe ₂ O ₃	950	Fe ₂ O ₃	22.8	
	Commercial Fe ₂ O ₃	1200	Fe ₂ O ₃	70.7	
	CommFe ₂ O ₃ /clay=75/25	950	Fe ₂ O ₃ , SiO ₂	2.5	
	CommFe ₂ O ₃ /clay=75/25	1200	Fe ₂ O ₃ , SiO ₂	35.0	
	Mill-scale (Ind)	950	Fe ₂ O ₃ , SiO ₂	3.5	
	Mill-scale (Ind)	1200	Fe ₂ O ₃ , SiO ₂	13.2	
	IndFe ₂ O ₃ /clay=75/25	950	Fe ₂ O ₃	11.7	
	IndFe ₂ O ₃ /clay=75/25	1200	Fe ₂ O ₃	107.5	
	Clay	900	SiO ₂ , Al ₂ O ₃ , Al ₂ SiO ₅	14.1	
Baltic Ceramics (BCR)	BCR_1_425_850		Al_2O_3 , traces of FeTi ₂ O ₅ , Fe ₂ O ₃ , Mn ₂ O ₃		
	BCR_2_425_850		Al ₂ O ₃ , Al ₂ (Al _{2.5} Si _{1.5})O _{9.75} , traces of FeTi ₂ O ₅ , Fe ₂ O ₃ , Mn ₂ O ₃		
	BCR_2_850_1180	1280	same composition as BCR_2_425_850		
	BCR_3_425_850		Al ₂ O ₃ , traces of FeTi ₂ O ₅	>100	
	BCR_4_425_850		Al ₂ O ₃ , traces of FeTi ₂ O ₅ , Fe ₂ O ₃		
	BCR_4_850_1180		same composition as BCR_4_425_850		
	BCR_5_841_1680	A	Al_2O_3 , SiO ₂ , traces of Fe ₂ O ₃ , 3Al ₂ O ₃ ·2SiO ₂		

Morphological characterization via SEM

Near spherical; size range 425-1680 μm (BCR), 700-1400 μm (APTL)

APTL samples:

- Low crystallinity & absence of clear Al₂O₃ & Al-Si-O peaks
- Higher calcination temperature \rightarrow more sintered structures & improved $CS \rightarrow$ Improved structural stability
- Major elements (EDS): Fe, Al, Si
- BET showed low surface area & no porosity (Hg-porosimetry)

BCR samples:

- Bauxite-based proppants with main phases: Al_2O_3 & aluminosilicates. Small amounts of Fe₂O₃, Mn₂O₃ & FeTi₂O₅
 - SEM results for same particle size (425-850 µm) very similar
 - ✓ Major elements (EDS): Al, Mn, Si. Also present Ca, Ti & Fe
 - Negligible surface area (BET) & no porosity

After test

CATALYTIC ACTIVITY EVALUATION SO₃ conversion %

blank

ersion / 20 20

10

SO₂ analysis by UV-Vis spectrometry in a setup for catalytic activity measurements

- On-stream exposure duration per test: 60 min
- Temperature: 850°C; Pressure: 1 bar \bullet
- Feed: concentrated sulfuric acid (98%), 0.12 ml/min
- Catalyst quantity per test: 1 g

	Material	SO ₃ conversion/%	Particle Color	CS _{after exp.} /N
	Commercial Fe ₂ O ₃ _950	53.6	dark red-blackish	29.0
	Commercial Fe ₂ O ₃ _1200	8.0	blackish-black	74.9
	CommFe ₂ O ₃ /clay=75/25_950	55.1	medium red	8.6
F	CommFe ₂ O ₃ /clay=75/25_1200	44.4	dark red-blackish	33.4
0 <	Mill-scale (Ind)_950	40.0	dark brown-blackish	7.3
	Mill-scale (Ind)_1200	36.8	blackish	12.9
	IndFe ₂ O ₃ /clay=75/25_1200	23.0	blackish	71.9
	Clay_900	15.4	light yellow	5.6
	BCR_1_425_850	10.3	black	61.3
	BCR_2_425_850	13.6	black	42.7
	BCR_2_850_1180	15.5	blackish	50.2
	BCR_3_425_850	9.9	blackish	52.0
	BCR_4_425_850	5.0	black	52.9
	BCR 4 850 1180	4.1	black	57.9

Commercial Fe2O3_950 CommFe2O3/clay=75/25_1200 IndFe2O3/clay=75/25_1200 140 Commercial Fe2O3_950 BCR 2 425 850 BCR 2 850 1180 BCR 5 841 1680 equilibrium CommFe2O3/clay=75/25 1200 120 IndFe2O3/clay=75/25_1200 z BCR 2 425 850 **1**00 BCR_2_850_1180 strength BCR 5_841_1680 80 60 Crushing 40

Indicative comparative results of SO₃ conversion and CS measurements

- APTL particles rich in Fe₂O₃ high efficiency
 - Samples calcined at 950°C more active cf. the ones calcined at 1200°C, but lower structural stability
 - Sintering at 1200°C detrimental to catalytic activity
 - Stable CS values before & after testing for selected samples
- BCR proppants relatively low performance
 - Absence or low content of catalytically active phases
 - No significant effect of particle size
 - CS reduced by >50% after 60 min of exposure \rightarrow but still high

Mechanical properties evaluation

Fresh

BCR_5_841_1680

13.4

47.7

blackish

- Equilibrium 81%
- Blank conversion 5%

CONCLUSIONS

- \checkmark Extremely high mechanical integrity leads to low catalytic activity in the BCR proppants \rightarrow lack of sufficient catalytically active phases + no porosity
- CommFe₂O₃/clay=75/25_1200 most promising material so far \rightarrow combines SO₃ conversion >40%, CS > 20 N & dark color \rightarrow Further improvement to be closer to s.o.a. performance ^{[2],[3]}

REFERENCES

- 1. Ho C., Christian J., Gill D., Moya A., Jeter S., Abdel-Khalik S., Sadowski D., Siegel N. Al-Ansary H., Amsbeck L., Gobereit B., Buck R., Energy Procedia, 49 (2014), 398-407
- 2. Karagiannakis G., Agrafiotis C.C., Zygogianni A., Pagkoura C., Konstandopoulos A.G., Int. J. Hydrogen Energy, 36 (4) (2011) 2831-2844
- 3. Giaconia A., Sau S., Felici C., Tarquini P., Karagiannakis G., Pagkoura C., Agrafiotis C., Konstandopoulos A.G., Thomey D., de Oliveira L., Roeb M., Sattler C., Int. J. Hydrogen Energy, 36 (11) (2011) 6496-6509

Combination of both approaches to create modified proppants relatively rich in catalytically active phases (e.g. Fe₂O₃, CuO) and high mechanical integrity Preliminary results on CuO-containing BCR proppants showed SO₃ conversion >50%

ACKNOWLEDGEMENTS

We would like to thank the European Commission for funding of this work through the Horizon 2020 project **PEGASUS** - GA No: 727540.

Contact: Nikolaos I. Tsongidis | Tel: +30 2310 498 256 | Fax: +30 2310 498 190 | e-mail: ntsongid@cperi.certh.gr | Web: http://apt.cperi.certh.gr