The EU Horizon 2020 project PEGASUS and its role in the CSP

CSP Today Sevilla 2017

<u>Dennis Thomey</u>, Christos Agrafiotis, Nicolas Overbeck, Martin Roeb, Christian Sattler

Co-funded by the Horizon 2020 Framework Programme of the European Union

Contents

- DLR Institute of Solar Research Solar Chemical Engineering
- Potential of solar energy
- Sulphur as industrial commodity and thermochemical storage medium
- Solar sulphur power generation
- Background of DLR on sulphur cycles
- European project PEGASUS
- Conclusions and outlook

German Aerospace Center (DLR)

- Research Institution, Space Agency and Project Management Agency
- Research Areas:
 - Aeronautics
 - Space Research and Technology
 - Transport
 - Energy
 - Defence and Security
- 8000 employees across 33 institutes and facilities at 20 sites in Germany
- Offices in Brussels, Paris, Tokyo and Washington
- Total income 2015: 888 Mio. €

Institute of Solar Research

Point Focus Systems

- Heliostats
- High temperature receivers
- System technology

Qualification

- Components
- Component durability
 - Systems

Line Focus Systems

- Heat transfer media
- Collector development
- Industrial process heat

Solar Energy Meteorology

- Solar radiation measurement and modelling
- Radiation nowcasting
- Other meteorological influences

New Materials

- Absorber materials
- High temperature redox systems
- Photocatalysts
- Heat transfer fluids

Solar Chemical Engineering

- Solar fuels
- Solar water treatment

Institute of Solar Research Solar Chemical Engineering

Solar Fuels

Technical development in all dimensions

Solar Plant

- Site assessment
- Solar field simulation
- Environmental impact

Receiver

- Design
- Simulation

Construction

- Testing
- Next generation development

Receiver Components

- Materials
- Design
- Heat and mass transport
- Simulation
- Testing and Development

Reactive Systems

- Simulation
- Synthesis
- Chemical characteristics
- Physical characteristics

Potential of solar energy

M. Schmitz, TSK Flagsol

Comparison of energy storage densities

Technology	Energy density (kJ/kg)		Volumetric energy density (kJ/l)
Hydrogen	141,886	1	~6,700 *
Gasoline	47,357	1	~35,000
Sulphur	9,281	2	~18,000
Lithium Ion Battery	580	2	~730
Molten Salt	282	2	~540
Elevated water Dam (100m)	1	2	~1

¹College of the Desert ²General Atomics *at 700 bar

Sulphur in industrial processes

- Sulphur is required for sulphuric acid (SA) production
 - SA is world's most produced chemical
 ⇒ Global annual rate >200 Mio. tons
 - SA is measure of industrial development
 - SA is mainly needed for **fertiliser production**

• Sulphur from desulphurisation of hydrocarbons via Claus process

• Sulphur is by-product of metallurgic processes

Sulphur world production 2014 Total of <u>69.1 Mio. tons</u> (avg. world price of US\$160 per ton)

Transportation and storage of sulphur In solid or liquid form

Train

Ship

Pipeline

Molten sulphur in heated pipelines (~140 °C)

Thermochemical sulfur storage cycle for on-demand solar power production

Solar particle technology

- Direct absorption \Rightarrow high efficiency and energy density
- Direct storage
- Receiver and storage at ambient pressure
- No freezing and no decomposition
- Low parasitic
- Low security requirements

Research of DLR on sulphur cycles

- Experience on solar sulphuric acid cracking since more than 20 years
- Research on Hybrid Sulphur Cycle for Hydrogen production in European projects HYTHEC, HycycleS and SOL2HY2 (2004 – 2016)
 - Development and on-sun testing of receiver/reactors in solar furnace
 - Construction of pilot unit and demo operation on solar tower
 - Modelling of reactors
 - Testing of catalysts and construction materials
 - Flowsheeting and techno-economics of HyS process
 - Scale-up concepts

Project Baseload (Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation)

- Funding: United States Department of Energy (DOE)
 - 2 project phases from 2010 to 2013
 - GO/NO-GO review after phase I
 - Phase I completed in Mar. 2012
 - GO recommendation for Phase II (May 2012 Oct. 2013)
- Coordinator: General Atomics (GA), USA
 - SO₂ disproportionation
 - Sulfur combustion
 - Experiments, plant design, flowsheeting, economics
- Subcontractor: German Aerospace Center (DLR)
 - H₂SO₄ decomposition
 - Experiments, modeling
 - Funded work and in-kind contribution

PEGASUS partners

- DLR, Germany (Coordinator)
 - Solar tower/simulator owner/operator
 - Solar receiver/reactor developer
- APTL/CERTH, Greece
 - Catalyst materials developer
- KIT, Germany
 - Combustion specialist
- Baltic Ceramics, Poland
 - Advanced ceramics manufacturer
- Processi Innovativi, Italy
 - Power plant designer/contractor
- BrightSource, Israel
 - CSP plant designer/contractor

PEGASUS – Work plan

- WP1: Catalytic particles development, manufacturing APTL, Baltic Ceramics
- WP2: Centrifugal particle solar receiver DLR
 - Preparation of existing test receiver
 - On-sun test operation with catalytic particles (WP1)
- WP3: Sulphur trioxide decomposer + WP4: Sulphuric acid evaporator DLR
 - Development and construction of moving bed reactors with direct (WP3) and indirect (WP4) heat transfer
 - Off-sun test operation
- WP5: Sulphur Combustor KIT
 - Development, construction and operation of sulphur burner
- WT6.1, 6.5, 6.6: Overall concept evaluation Processi Innovativi, BrightSource
 - System modelling, flowsheeting, techno-economy
- WT6.2-6.4: System integration, test operation DLR
 - Integrated operation of solar receiver (WP2) and sulphuric acid splitting reactors (WP3, WP4)

DLR Solar Power Tower in Juelich, Germany Research and demonstration plant

- 2153 heliostats (mirrors) à 8 m²
- 60 m tower
- 22 m² solar receiver
- 680 °C air outlet temperature of receiver
- 1.5 MW_{el} steam turbine
- Thermal storage for 1 hour of full load operation

Centrifugal particle solar receiver optimization Application of pilot receiver developed in CentRec project

- Centrifugal particle receiver was erected on scaffold in front of Juelich Solar Tower
 - Nominal power: 2.5 MW_{th}
 - Diameter of aperture: 1.13 m
 - Max. particle temperature: 1000 °C
- Commissioning completed
- Solar testing of CentRec started in autumn 2017

Project PEGASUS

- Solar testing of catalytic particles in CentRec pilot
- Integrated testing together with particle reactors for sulphuric acid splitting planned in last project year

Development of catalytic particles

Experimental conditions

- Reaction temperature: 850 °C
- Pressure: 1 bar
- Feed: liquid sulfuric acid 95-98 w%
- Catalyst quantity per test: 1 g
- On-stream exposure per test: 60 min

Results of CuO enriched particles

Setup for catalytic activity measurements

Preparation and qualification of catalytic particles Required quantity for solar testing: 3 tons

Particle preparation (capacity of 3000 tons/year)

Particle characterisation

Crush test

Abrasiveness

Density

Roundness and sphericity

Solubility in acid

Development of particle reactor for sulphuric acid splitting

 $H_2SO_4 \Rightarrow SO_3 + H_2O \quad (400 \ ^\circC)$ $SO_3 \Rightarrow SO_2 + \frac{1}{2}O_2 \quad (850 \ ^\circC)$

SO₃ decomposer

Sulphuric acid evaporator

 Indirect heat transfer (tube type) Direct contact Particles 900 °C Particles 750 °C SO₃, H₂O SO₂, O₂, H₂O 400 °C 850 °C H₂SO₄ SO₃, H₂O 25 °C 400 °C Particles 750 °C Particles 100 °C

Development of sulphur burner for gas turbines

Test rig for atomization and combustion of sulphur

Development of chemical kinetics and CFD aided burner development

Process simulation and techno-economics

Flowsheet development

Techno-economical evaluation

Blocking & Shadowing (e.g. 21st Mar.)

Solar field design and modelling Reference site: Ouarzazate, Morocco

Cosine effect (e.g. 1st Jan.)

Conclusions and outlook

- Sulphur is one of the most important commodity of chemical industry
- Sulphur has high thermochemical energy density
- Transportation and storage of solid or liquid sulphur is industrial practice
- Solar sulphur cycle allows for baseload and on-demand power production
- Potential for integration of sulphur cycle into existing sulphuric acid plants
- Investigation of solar sulphur cycle in European project PEGASUS
 - Development and on-sun testing of catalytically active solar particles
 - Construction of particle reactor for sulphuric acid splitting
 - Prototype development of sulphur burner for gas turbine
 - Component modelling and solar field design
 - Process simulation and techno-economic analysis

Thank you for your attention!

