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THERMOCHEMICAL ENERGY STORAGE APPLICATION
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Renewable Power Generation by Solar Particle Receiver Driven Sulphur Storage Cycle
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OUTLINE

 Description of PEGASUS Concept

 TCS reaction scheme

 Our role in the project

 Preliminary results:

 Materials characterization

 Materials evaluation
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CONCEPT

 Novel power cycle for renewable electricity production

 Coupling of a centrifugal particle receiver for solar towers & a compact sulfur-based Thermo-

Chemical energy Storage (TCS) scheme

 High operating temperatures with high energy density storage potential

 Development of oxide-based particles with a double role. Used both as:

 Catalysts for the SO3 dissociation reaction (primarily) and

 Heat Transfer Fluid (HTF)

 Advantages of the suggested scheme:

 Very high energy density: approx. 12,500 kJ/kg cf. 300 kJ/kg for molten salts

 Cost-effective material (<60 €/tn cf. ~400 €/tn for molten salts) and cheaply stored in piles
under ambient conditions

 Constant temperature heat recovery and possibility for higher temperature stored energy
retrieval cf. original heat input 5/11



Endothermic reaction steps (charge)

Exothermic reaction steps (discharge)

2H2SO4(aq) → 2SO3(g) + 2H2O(g) T= 450-500oC

2SO3(g) → 2SO2(g) + O2(g) T= 700-900oC

2H2O(l) + 3SO2(g) → 2H2SO4(aq) + S(s) T= 50-200oC 

S(l) + O2(g) → SO2(g) T= 500-1500oC

THERMOCHEMICAL SULFUR STORAGE CYCLE

ΔΗ = 551 kJ/mol ΔH= -300kJ/mol 

ΔH= -260kJ/mol 
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OUR ROLE IN THE PROJECT

 Development of oxide-based materials with

double role: SO3 dissociation catalysts & HTF

 Fe2O3 & CuO enriched particles

 Nearly spherical formulations manufacturing

 Main requirements:

High catalytic activity

High thermo-mechanical strength &

resistance

Black or blackish color for high solar

absorbance

 Physicochemical characterization (XRD, BET,

Hg-porosimetry, SEM/EDS, TGA)

 Mechanical properties evaluation (crushing

strength measurements)

 Preliminary evaluation upon catalytic activity
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 Quartz tube reactor filled with quartz beads (left side) and quartz wool (right side). Particles

in fixed bed formulation

 SO2 analysis by UV-Vis spectrometry in a heated (212oC) quartz cuvette

 Experimental conditions set for the preliminary tests

 Reaction temperature: 850oC

 Pressure: 1 bar

 Feed: conc. sulfuric acid (95-98%), 0.12 ml/min

 GHSV =  50,000 h-1 / LHSV = ~ 14 h-1

 Catalyst quantity per test: 1 g

 Daily SO2 calibration (prior to each test)

 Dilution of reactor outlet with N2 flow to

achieve measurable SO2 concentration values

(0.5 – 3 std lt/min)

 On-stream exposure per test: 60 min

EVALUATION SETUP & EXPERIMENTAL CONDITIONS

8/11



CHARACTERIZATION OF Fe2O3-BASED PARTICLES

CommFe2O3/clay=75/25_950 CommFe2O3/clay=75/25_1200 Mill_scale(Ind)_950 Mill_scale(Ind)_1200

x60 x40 x60

x1000x1000x1000x1000

Fe: 69 wt%

Al: 13 wt%

Si: 18 wt%

Fe: 72 wt%

Al: 10 wt%

Si: 18 wt%

Fe: 64 wt%

Al: 15 wt%

Si: 21 wt%

Fe: 74 wt%

Al: 10 wt%

Si: 17 wt%
x50

1 mm 500 μm 500 μm 500 μm

50 μm 50 μm 50 μm 50 μm

 Clay used as additive
 No mixed Fe2O3 – clay phases identified by XRD
 Major elements present: Fe, Al, Si
 Higher calcination temperaturemore sintered structures

9/11



PRELIMINARY RESULTS
 SO3 dissociation activity 

 Thermo-mechanical stability

 Fe2O3 materials:

• Samples calcined at 950oC more active cf. the ones calcined at 1200oC, but lower

structural stability

• Higher calcination temperature improved CS Improved structural stability

• Sintering at 1200oC detrimental to catalytic activity

 CuO materials:

• CommCuO/clay with high conversion (i.e.~50%)

• Clay presence favored catalytic activity, however, caused deterioration in stability

• Characterization results pending 10/11
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